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The following text is a brief summary of both my past research and my plans for future research.
My PhD thesis ([11]) was about topos theory and its relations to non-commutative geometry. It leads me to

also think about questions of constructive mathematics, in order to use the internal logic of toposes, and about
point-free topology, in order to be able to use tools of analysis in this framework of internal logic.

After my PhD, I gradually moved my interests to algebraic topology and higher category theory, but I
still have some ongoing work and projects related to topos theory, point-free topology and non-commutative
geometry. For this reason the following text will be divided in three independent parts each discussing a di�erent
area. The �rst one about higher category theory, and is my most active area of research at the moment.

1 Algebraic topology : Algebraic models for higher category theory

My interest in topos theory and categorical logic, and the year I spent as a post-doc in Nijmegen algebraic
topology group naturally lead me to follow the development of the higher categorical version of topos theory
and categorical logic, which consists mostly of the �homotopy type theory� program ([29]).

But at the moment we still do not have a satisfying ∞-categorical version of categorical logic :

The �rst problem is that we do not know how to formalize large parts of classical mathematics in homotopy
type theory. One of the major obstruction here is that we do not know how to formalize higher category theory
itself in homotopy type theory and this leaves us stuck as soon as there is a problem of higher coherence
conditions to handle (and those problems are very common in homotopy type theory). The classical approaches
to higher category theory or higher coherence conditions is trough simplicial sets (or other similar combinatorics,
cubical sets, opetopic sets, dendroidal sets, associahedrons,...), but in type theory, just de�ning what simplicial
types are already lead to an apparently unsolvable higher coherence problem.

A possible solution to this has been suggested by G.Brunerie (see [6] or the appendix A of his PhD thesis
[7]) : he showed that Grothendieck's de�nition of globular∞-groupoids can be formalized within homotopy type
theory. Unfortunately, even in classical mathematics we do not really know how to work with this de�nition :
the comparison with topological spaces or other models for ∞-groupoids is still an open problem (known as the
homotopy hypothesis), we do not know how to put a model category structure on the category of Grothendieck's
∞-groupoids, and we do not even know how to de�ne the ∞-groupoids of functors between two ∞-groupoids,
even in simple cases like constructing path spaces.

The second di�culty is that it is not clear either that intentional type theory is indeed the internal logic of
higher categories. One of the problem is that the higher categorical structures that arises from type theory are
very naturally globular (see for example [28]). It would be more accurate to say that intentional type theory is
the internal logic of globular ∞-categories, but as I mentioned above, comparing globular higher categories to
other models for higher categories is still an open problem. The other problem is that the most natural notion
of �model of type theory� ( contextual categories with additional structures) are structures that are a lot more
�strict� than most structures considered to model ∞-categories, so we need some sort of stricti�cation theorem
to compare them.

These remarks lead me to work �rst on the theory of globular models for higher category, with the goals of
both being to work with them and to prove that they are equivalent to other known models.

My results on this subject are in [16], where i focused on the special case of ∞-groupoids (instead of (∞, 1)-
categories). I studied what I called �cylinder categories� which are just the categorical opposites of the path
categories introduced by I.Moerdijk and B.Van Den Berg in [5], which provides a categorical semantic for a
very weak fragement type theory. More precisely I have been interested in a special kind of cylinder categories
that are freely generated in a certain sense and that I have called �cylinder coherators� because they play a role
similar to Grothendieck's coherator in the de�nition of ∞-groupoids. My results are :
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• Each cylinder coherator C de�nes a notion of weak ∞-groupoids called the C-groupoids. This is a com-
pletely algebraic notion.

• For each C, the category of C-groupoids is a combinatorial semi-model category in which every object is
�brant. These semi-model categories are all naturally Quillen equivalent to each other.

• For certain C one gets �simplicially shaped� groupoids (for example semi-simplicial algebraic Kan com-
plexes). These can be easily compared to simplicial sets or topological spaces.

• There is a cylinder coherator C such that C-groupoids are globular sets endowed with all the operations
that one can de�ne in intentional type theory using only (weak) identities type. This provide the �rst
globular de�nition of ∞-groupoids for which one can prove the homotopy hypothesis. Also, G.Brunerie's
argument can also be applied to this kind of groupoids to show that they can be de�ned within homotopy
type theory.

• Under a seemingly simple technical conjecture, there is a cylinder coherator C such that the C-groupoids
are exactly Grothendieck's ∞-groupoids. Hence, if this conjecture holds, this would prove the homotopy
hypothesis, as well as solve most of the open problems related to Grothendieck's de�nition of groupoids
(for example, constructing an ∞-groupoid of weak functors between two ∞-groupoids).

This seems to be a very promising direction in order to solve the problems mentioned above. In particular,
this new de�nition of ∞-groupoids based on type theory has all the good properties that we want : it satis�es
the homotopy hypothesis, has all the good properties expected for a category of ∞-groupoids, every objects in
every model of intentional type theory carries the structure of a groupoid in this sense, and �nally it can be
de�ned within homotopy type theory. A de�nition of ∞-categories with the same sort of properties would be a
perfect candidate to solve all the problems mentioned above. This paper is only the start of a larger research
program, here is a �rst list of things that should be investigated and on which I have been working recently :

• One needs a similar notion of �coherator� for a de�nition of (∞, 1)-category and for other sorts of higher
categorical structures (∞-categories, monoidal (∞, 1)-categories, A∞ and En algebras,∞-operads, etc.),
which would allow to similarly de�ne globular notion of (∞, 1)-category and to compare them to usual
notions. Good starting points for this are the axiomatics approach to (∞, n)-category by C.Barwick and
C.Schommer-Pries in [4] or the synthetic approach to (∞, 1)-category by M.Shulman et E.Riehl in [26].

• The theory of C-groupoids for a coherator C seems to be mostly constructive (which is important if we
want to have it works within type theory), but this has not been checked in details as our paper [16] was
mostly focused on trying to prove a comparison theorem with classical (and non constructive) models
for homotopy types. There is at least one di�culty to be addressed here. Because of the existence of non
hyper-complete∞-toposes, it is expected that in constructive mathematics, there is three non equivalent
notions of equivalences between ∞-groupoids : being a bijection on all the πn, being invertible as an
anafunctor (the distinction between the �rst two does not appears for n-groupoids for n <∞) and being
invertible as a weak functor. As this feature only appears in constructive mathematics, it has not been
treated yet.

• One needs to show that those de�nitions of∞-groupoids can indeed be used within type theory. Although
one can convince oneself that it works, it is very likely that only a computer implementation would be a
convincing proof of this. Next one need to see how much of standard algebraic topology can be internalized
in type theory using this notion of ∞-groupoids.

• And of course one can try to prove Grothendieck's homotopy hypothesis, there is several possible ap-
proaches to this question, it is not clear which ones is the more promising.

At an abstract level, the inner working of this theory of coherators relies on two things : First a kind of �weak
model structure� on a category of �pre-cylinder categories� where the cylinder categories mentionned above are
the �brant objects and the cylinder coherator are the �brant replacement of the free pre-cylinder category on
one object. And second a process that complete any cylinder category into a (weak) model category, and such
that the weak equivalence in the sense of the weak model structure on pre-cylinder category induces Quillen
equivalence between the completion.

This weak model structure can be thought of as a homotopy theory of �higher cartesian theories� and the
completion into a model category as looking at the �category of models� of the theory, and to some extent the
general goal of this work is to build a framework to help understand most of the construction of model structures
used in algebraic topology and higher category theory and of the various comparison theorem between those
models in a more systematic way (almost all the �algebraic� model structure used in algebraic topology, like
those on simplicial sets, cubical sets, dendroidal sets, simplicial spectra and so one appears in this framework).
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At a present time the theory is e�cient at studying and comparing �fully weak higher theory� where there is no
equations between the various operations of the theory, but only other operations that produces �isomorphisms�
or �homotopies� in some sense (Because these corresponds to the �brant-co�brant objects of our weak model
structure). Most of the �higher theory� that peoples use in practice (everything based on simplicial, cubical
or dendroidal sets for example) are not fully weak (for example for simplicial sets the relation between the
degeneracies are relations between operations) only Globular models, models based on semi-simplicial sets or
semi-dendroidal sets as well as some opetopic models are fully weak.

What I'm interested in at the present time is the understanding of how equivalences between such fully
weak models and �semi-strict� models are obtained, i.e. some general �stricti�cation results�. There is a lot of
examples of such stricti�cation results which are proved, and even some very general ones : Mac Lane coherence
theorem for monoidal categories and the various results of stricti�cation for pseudo-algebras for 2-monads, the
Berger-Moerdijk stricti�cation theorem for homotopy algebras of Σ-co�brant operads, the equivalence between
quasi-categories and simplicial categories, the equivalence between semi-simplicial sets and simplicial sets for
representing homotopy types, the comparison by K.Szumilo between Brown category of �brant objects and
�nitely complete quasicategory etc... and on the other hand, a lot of similar question that are open problem :
Proving that various form of intentional type theory are the internal logic of di�erent type of Higher categories
(known in some cases), the various form of C.Simpson semi-stricti�cation conjecture, a very general semi-
stricti�cation conjecture of M.Batanin for globular operads whose slices are Σ-co�brant, etc. It appears that
the ideas on all these examples are always very similar and there is real hope to obtain general stricti�cation
theorems. Moreover there is also a long list of �counterexamples� and cases where stricti�cation is impossible,
which can help us understand more precisely what are the hypothesis needed.

Recently I have been working more concretely on C.Simpson's semi-stricti�cation conjecture to test those
ideas. What is interesting for this conjecture is that we have a famous erounous paper [24] by M.Kapranov and
V.Voevodsky that is supposed to contain a sketches of proof of this conjecture. In my recent preprint [21] I
have investigated in detail this paper of Kapranov and Voevodsky and I explain what is the main obstruction
for their strategy to work and I Proved new results about the theory of polygraph that allow to overcome this
obstruction. I'm curently working to extend this into a full proof of C.Simpson conjecture.

2 Toposes, C∗-algebras and K-theory

This has been my main research interest during my PhD thesis. The starting idea was that both topos theory
and non-commutative geometry are concerned with certain �generalized spaces� and in a lot of situations some
of these �generalized spaces� have been (or can be) studied both by attaching to them a topos or a C∗-algebra
(e.g. foliations, dynamical systems, groupoids, graphs, etc.). My goal is to obtain a better understanding of the
relation between the two theories : how does the information extracted from the topos and the algebra relates ?
Can the algebra be constructed from the topos, or conversely ? Can we transport some techniques and ideas
from one subject to the other ?

My �rst approach to this question was to use a good notion of continuous �eld of Hilbert spaces on a topos
(or more generally of Banach spaces or of C∗-algebras) using the internal logic : it is just an ordinary Hilbert
space in the internal logic of the topos. These objects have already been studied in the 80s (by B.Banachewski,
C.J.Mulvey, C.W.Burden and others) and it was known that over ordinary topological spaces they are equivalent
to the usual de�nitions of continuous �elds in functional analysis. Moreover these continuous �elds can be
handled easily using internal logic : any constructive result about Hilbert spaces translates automatically into
a result about continuous �elds.

The important point is that the algebra of endomorphisms of such a continuous �eld of Hilbert spaces is
a C∗-algebra which is naturally attached to the topos. It appears that those algebras are not exactly those
corresponding to the analogy above if one starts with an object which can be represented by both a topos and
an algebra, but it is close enough to read some properties of the correct algebra on the topos and conversely.
My thesis [11] and some of my following work was devoted to this approach.

The most satisfying result that I obtain in this direction is a construction in [19] of a ∗-algebra naturally
attached to any �locally absolutely compact� topos. This ∗-algebra can be completed into either a reduced or
a maximal C∗-algebra as well as a Banach L1-algebra, this construction applies to all the examples that we
have of objects to which both a C∗-algebra and a topos can be attached and produces the correct C∗-algebras,
at least up to Morita equivalence. Moreover the algebra comes with a universal property : Modules over the
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∗-algebra are the same as sheaves of module over the sheaf of continuous functions (with values in R or C) on
the topos.

But before that I obtained several other results of independent interest :

• In the �rst chapter of my thesis I have studied this construction in the case of atomic toposes where
everything can be understood completely explicitly in terms of a certain notion of �hypergroupoid�. This
case served as a �toy model� for large part of my subsequent work.

• In [18], I compared topos theory and non-commutative geometry at the level of �measure theory�. In non-
commutative geometry, measure theory corresponds to the theory of Von Neumann algebras, in topos
theory, it is played by a new notion of integrable boolean toposes and the main result of the paper is a
construction of an analogue of the �modular time evolution� (a typical feature of von Neumann algebras)
for integrable boolean locally separated toposes. It takes the form of a completely canonical R>0-�ber
bundle on those toposes, that generates a one parameter family of endofunctors of the category of �elds
of Hilbert spaces over the topos. If the bundle is trivial, then the family of endofunctors is also trivial,
but in this case any section of that bundle provides an �invariant measure� on the topos (the analogue
of a trace in non-commutative geometry).

• [15] is a sketch of a technique to reconstruct a topos from its category of continuous �elds of Hilbert
spaces endowed with its monoidal structure. It completely proves the result for boolean (locally separated)
toposes, but the result of [14] mentioned below should allows one to extend this to a considerably larger
class of (non-boolean) toposes.

• In [14] I proved a technical result in topos theory : that under a purely topological assumption on a
topos (essentially separation) one can construct objects in the topos that are internally ��nite�. Those
�nite objects are very important when doing analysis over the topos, in fact the version of this result for
boolean toposes (considerably easier) is a key lemma in [18] and [15] and this result is also crucial for
the next two papers mentioned.

• In [12] I proved that for a topos that is decidable separated and locally compact, one has a �Green-
Julg type� theorem asserting that its category of continuous �elds of Hilbert spaces is equivalent to the
category of Hilbert modules over a �C∗-algebra of the topos�. In the case where the theorem applies,
it indeed constructs the correct C∗-algebra to be attached to the topos in the sense that it �ts with
all the examples of objects producing both a topos and a C∗-algebra. Unfortunately, the cases where a
theorem of this kind holds are essentially the �not very interesting� ones : they basically correspond to
proper Hausdor� groupoids, and will for example only produces type I (or post-liminal) algebras. This
result was important toward the more general construction of the ∗-algebra of a topos obtained in [19]
that I mentioned above. A large part of the paper is devoted to the de�nition and study of a notion of
categorical (co)completeness adapted to C∗-categories, and it also contains a constructive treatment of
parts of the theory of C∗-algebras and C∗-categories that hasn't been developed before.

The next step in this direction, now that we know how to attach a C∗-algebra to a reasonable topos (in fact
both a reduced and a maximal C∗-algebra), is to investigate how the properties of the topos and the algebra
relates. Here we have mostly in mind (co)homological and K-theoretic properties.

For example the Baum-Connes conjecture corresponds (at least on examples) to a comparison between the
K-theory of the reduced algebra of a topos and a kind of K-theory attached to the topos itself. One of my
goals is to give a better topos theoretic, and higher categorical formulation of this. The �rst step is to de�ne
KK-theory relative to a topos (for �elds of C∗-algebras over a given topos), generalizing equivariant KK-
theory. Next, using the topos theoretic Green-Julg theorem of [12], one should be able to construct a Kasparov
descent homomorphism and, �nally, one should be able to formulate a topos theoretic version of the Baum-
Connes conjecture. One should also be able to do the same things for the algebraic convolution algebra and
for the Banach L1-algebra to get an analogue of the Farrell-Jones conjecture and of the Bost conjecture in this
framework. We believe that this will be especially interesting for the Farrell-Jones conjecture which has never
been formulated outside a purely algebraic framework.

I'm also very interested in reformulating these isomorphisms conjecture in a language closer to modern
algebraic topology and higher category theory, a little bit in the spirit of [8].

Similarly, for the C∗-algebra of a foliation, it is known that the cohomology of the corresponding topos
(the leafwise cohomology) is the same as the cyclic cohomology of the sub-algebra of smooth functions of the
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C∗-algebra. It would be interesting to understand this result from the topos theoretic perspective and to see if
it can be extended to more general toposes.

Another more elementary point, is that it also seems that the non-commutative measure theory of the C∗-
algebra is related to the theory of cosheaves of Banach spaces on the topos. This is also something that we need
to understand. If it is the case, it could then be used to study some sort of non-commutative measure theory
for toposes that does not give rise to a C∗-algebra, for example for the toposes coming from algebraic geometry
or those with some non-locally compact isotropy groups.

Finally, I have also been thinking about a construction of a C∗-algebra attached to a smooth stack.
A smooth stack is a kind of generalized manifold. To any Lie groupoid, one can associate a smooth stack

which is essentially the space of orbits of the groupoid, and up to Morita equivalence the C∗-algebra of the
groupoid only depends on this stack (and if one �xes the natural map from the space of objects of the groupoid
to the stack then the algebra is determined up to unique isomorphism). But it appears that there is a lot of
situations where one has a smooth stack which does not come from a groupoid but which admits a C∗-algebra.
A typical example of this is the C∗-algebra of G.Skandalis and I.Androuliakis attached to a singular foliation
(see [2]). Moreover it has been shown in [27] that one can attach a smooth stack to any Lie algebroids (integrable
or not). It would be interesting to investigate the C∗-algebra of those stacks (in the case of an integrable Lie
algebroids it gives the C∗-algebra of the corresponding Lie groupoid).

This construction relies on ideas inspired from the construction of the C∗-algebra of a topos. There are two
strategies for the construction of the algebra attached to a stack, which are hopefully equivalent : the �rst is to
represent the stack as a quotient stack of a groupoid whose space of morphisms is itself already a stack. The
main point is then that under certain conditions one can de�ne what is a density on a stack and one can hence
try to apply the construction of the groupoid algebra based on half-density for this groupoid (this is exactly
what is done in [2] although stacks are not mentioned explicitly there). The second strategy is to represent the
stack as a colimit of a diagram of manifolds and submersions between them, turn that diagram into a a diagram
of C∗-algebras and correspondences (using the �relative half-density� correspondence attached to a submersion)
and investigate if the corresponding colimit exists in the category of C∗-algebras and correspondences (co-limit
of this kind have been investigated in [1]). These two approaches seem to agree on all the examples where I
have been able to try both of them.

C∗-algebras of Lie groupoids (and smooth stacks) are very important, for example the construction of the
algebra of a Lie groupoid is one way to mathematically understand quantization (see [25]), and from this
perspective, smooth stacks might appear as a more suitable framework to apply the ideas of [22] in physics than
topos theory.

3 Point-free topology, locales theory

Locales are an alternative to topological spaces. While a topological space is given by a set of points and
a set of �open subsets� satisfying some stability properties, a locale is de�ned by just specifying a set of �open
subspaces� with some operations (arbitrary unions, �nite intersections), and its set of points is recovered after-
ward, hence the name �point-free topology�. There is a close relationship between topological spaces and locales
(an adjunction which induces equivalences on very large sub-categories) but the theory of locales introduces
some new interesting objects, which might have no points (like the space of generic real numbers) and is a little
better behaved than the category of topological space in some respect. One can consult [23] for a non-technical
overview of the subject.

Point-free topology has some interest in classical mathematics, but it is especially interesting regarding
constructive mathematics and topos theory : the relation between toposes and topological spaces goes trough
the notion of locales, and in constructive mathematics the notion of locales is considerably better behaved than
topological spaces. Indeed a lot of classical spaces will �lack of points� without the axiom of choice (typically
in�nite products, functions spaces, etc.) and the point-free perspective handles them considerably better. A lot
of theorems considered as completely non-constructive (like the Tychonov theorem, the Hahn-Banach theorem
etc.) become constructive once formulated in the language of locales.

My main contribution to the subject was proving in [17] a localic and fully constructive version of the
Gelfand duality, conjectured by C.J.Mulvey and B.Banaschewski in [3], which is an equivalence between compact
Hausdor� locales and a new notion of localic commutative unital C∗-algebras. This just gives back the ordinary
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Gelfand duality when interpreted in classical mathematics, but it can also be interpreted in other constructive
models, like the category of sheaves over a space, where it gives a statement relating semi-continuous �elds of
commutative C∗-algebras over a given space X with proper and relatively separated covers of X, without any
assumption on the base space X. In order to achieve this I developed a constructive theory of metric locales
and of their metric completions.

I have also extended this to non-unital algebras (and hence locally compact regular locales) in [10]. In [13] I
have applied this to produce a better behaved version of the Bohr topos construction (introduced in the topos
theoretic approach to Quantum physics) which solves some of the problems of this theory.

More recently, in [20], I have applied the ideas of point-free topology to the theory of isotropy of toposes
developed by J.Funk, P.Hofstra and B.Steinberg in [9]. This theory constructs for each Grothendieck topos
a completely canonical group object in the topos, called the isotropy group which acts canonically on every
objects of the topos making all morphisms equivariant. I have shown that their isotropy group is in fact the
group of points of a more general localic isotropy group, which do not just act on every objects of the topos,
but also on every locales or toposes de�ned over this base topos. Large part of their theory still work in this
localic framework, but the localic group has considerably better functoriality and stability property, which allow
to push the theory further : this solves certain di�culties, for example it explains the phenomenon of higher
isotropy observed in [9], and gives a new canonical factorization of geometric morphisms into �connected atomic
morphisms� followed by �essentially anisotropic morphisms� which was one of the open problem of the theory.

I do not have any precise research plan regarding this aspect of my work, even though there are some
questions I am interested in : trying to develop a good constructive and localic integration theory, and the
related problem of developing a constructive theory of Von Neumann algebras parallel to the theory of localic
C∗-algebras I have already developed, or to understand better the various type of �surjections� between locales
and image factorization.
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